
Publications where MHC I Reagents were used
Hong, E. et al. Configuration-dependent presentation of multivalent IL-15:IL-15Rα enhances the antigen-specific T cell response and anti-tumor immunity. J Biol Chem. 2015 291(17):8931-50.
Fadel, T.R. et al. A carbon nanotube-polymer composite for T-cell therapy. Nat Nanotechnol. 2014 9(8):639-47.
Braendstrup, P. et al. Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2. PLoS One. 2014 9(4):e94892.
Gunnarsen, K.S. et al. Chaperone-assisted thermostability engineering of a soluble T cell receptor using phage display. Sci Rep. 2013 (3):1162.
Fadel, T.R. et al. Adsorption of multimeric T cell antigens on carbon nanotubes: effect on protein structure and antigen-specific T cell stimulation. Small. 2013 (5):666-72.
Publications where MHC II Reagents were used
Braendstrup, P. et al. Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2. PLoS One. 2014 9(4):e94892.
Braendstrup, P. et al. MHC class II tetramers made from isolated recombinant α and β chains refolded with affinity-tagged peptides. PLoS One. 2013 8(9):e73648.
Wang, M. et al. Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides. Immunology. 2011 132(4):482-91.
Nielsen, M. et al. NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure.
Immunome Res. 2010 (6):9.
Justesen, S. et al. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays. Immunome Res. 2009 (5):2.
Nielsen, M. et al. Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol. 2008 4(7):e1000107.
Publications where FcRn Reagents were used
Toschkova N. et al. Conservative pattern of interaction of bat and human IgG antibodies with FcRn. Dev Comp Immunol. 2022 Oct 20;139:104579
Hangiu O, Compte M, Dinesen A, et al. Tumor targeted 4-1BB agonist antibody-albumin fusions with high affinity to FcRn induce anti-tumor immunity without toxicity. Iscience. 2022, 25(9):104958. DOI: 10.1016/j.isci.2022.104958. PMID: 36072551; PMCID: PMC9441337.
Gjølberg TT, Frick R, Mester S, et al. Biophysical differences in IgG1 Fc-based therapeutics relate to their cellular handling, interaction with FcRn and plasma half-life. Communications Biology. 2022, 5(1):832. DOI: 10.1038/s42003-022-03787-x. PMID: 35982144; PMCID: PMC9388496.
Chen, X., Schneewind, O., & Missiakas, D. Engineered human antibodies for the opsonization and killing of Staphylococcus aureus. Proceedings of the National Academy of Sciences. 2022, 119(4), e2114478119.
Mandrup, O.A., Ong, S.C., Lykkemark, S. et al. Programmable half-life and anti-tumour effects of bispecific T-cell engager-albumin fusions with tuned FcRn affinity. Communications Biology, 2021, 310 (2021).
Larsen M.T. et al. FcRn overexpression in human cancer drives albumin recycling and cell growth; a mechanistic basis for exploitation in targeted albumin-drug designs. Journal of Controlled Release 2020, 322:53-63.
Van Faassen H. et al. Serum albumin‐binding VHHs with variable pH sensitivities enable tailored half‐life extension of biologics. The Faseb Journal 2020, 34(6):8155-8171.
Hubbard J. J. et al. FcRn is a CD32a coreceptor that determines susceptibility to IgG immune complex–driven autoimmunity. J Exp Med 2020, 217(10):e20200359.
Sanches M. et al. AlbuCORE: an albumin-based molecular scaffold for multivalent biologics design. MABS 2020, 12(1): e1802188.
Chen X. et al. Staphylococcus aureus Decolonization of Mice With Monoclonal Antibody Neutralizing Protein A. The Journal of Infectious Diseases 2019, 219(6):884–888.
Kræmmer Schelde et al., A new class of recombinant human albumin with multiple surface thiols exhibit stable conjugation, and enhanced FcRn binding and blood circulation. J Biol Chem. 2019 Mar 8;294(10):3735-3743
Mader S. et al. Mutations of Recombinant Aquaporin-4 Antibody in the Fc Domain Can Impair Complement-Dependent Cellular Cytotoxicity and Transplacental Transport. Frontiers in Immunology 2018, 9:1599.
Grevys A et al., A human endothelial cell based recycling assay for screening of FcRn. Nat Commun. 2018 Feb 12;9(1):621.
Ulrichts et al., Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest. 2018 Oct 1; 128(10): 4372–4386.
Schmøkel J. et al. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding. Nanotechnology 2017, 28(20): 204004.
Burkrinski et al., Glucagon-like Peptide 1 Conjugated to Recombinant Human Serum Albumin Variants with Modified Neonatal Fc Receptor Binding Properties. Impact on Molecular Structure and Half-Life. Biochemistry. 2017 Sep 12;56(36):4860-4870
Petersen S. S. et al. Neonatal Fc Receptor Binding Tolerance toward the Covalent Conjugation of Payloads to Cysteine 34 of Human Albumin Variants. Mol. Pharmaceutics 2016, 13(2):677–682.
Karlsson R et al. Comparison of surface plasmon resonance binding curves for characterization of protein interactions and analysis of screening data. Analytical Biochemistry 2016, 502:53-63.
Abdiche Y. N. et al. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs 2015, 7 (2), 331-43.
Culina, S. et al. Materno-fetal transfer of preproinsulin through the neonatal Fc receptor prevents autoimmune diabetes.
Diabetes. 2015 64(10):3532-42.
Gupta, N. et al. Regulation of immune responses to protein therapeutics by transplacental induction of T cell tolerance.
Sci Transl Med. 2015 7(275):275ra21.
Publications involving Neoscreen Technology
Smit, M.J, et al. First-in-human use of a modular capsid virus-like vaccine platform: an open-label, non-randomised, phase 1 clinical trial of the SARS-CoV-2 vaccine ABNCoV2. The Lancet Microbe. 2023.
Khan et al. Characterization of HLA‐A* 33: 03 epitopes via immunoprecipitation and LC‐MS/MS. Proteomics. 2022: 2100171.
Bing, S.J. et al. Differential T cell immune responses to deamidated adeno-associated virus vector. Methods & Clinical Development. 2022; 24: 255-267.
Ouspenskaia, T. et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nature Biotechnology. 2022; 40(2): 209-217.
Caushi, J. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature. 2021 596: 126-132.
Giacomo, O. et al. Phenotype specificity and avidity of antitumor CD8+ T cells in melanoma. Nature. 2021 596: 119-125.
Platten M. et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature, 2021, 592(7854):463-468.
Prachar M. et al. Identification and validation of 174 COVID-19 vaccine candidate epitopes reveals low performance of common epitope prediction tools. Scientific Reports, 2020, 10: 20465.
Cassotta A. et al. Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin. J Exp Med 2020, 217(10): e20200206.
Green E. W. et al. Chapter Twenty-One - TCR validation toward gene therapy for cancer. Methods in Enzymology, 2019, 629:419-441.
Sarkizova, S. et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat Biotechnol. 2020 38:199-209.
Zhang, J. et al. The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival.
Commun Biol. 2019 23(2):135.
Smith, K.N. et al. Persistent mutant oncogene specific T cells in two patients benefitting from anti-PD-1. J Immunother Cancer. 2019 7(1):40.
Le, D.T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017 357(6349):409-413.